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We show that Kolmogorov multipliers in turbulence cannot be statistically
independent of others at adjacent scales (or even a finite range apart) by
numerical simulation of a shell model and by theory. As the simplest general-
ization of independent distributions, we suppose that the steady-state statistics
of multipliers in the shell model are given by a translation-invariant Gibbs
measure with a short-range potential, when expressed in terms of suitable
‘‘spin’’ variables: real-valued spins that are logarithms of multipliers and
XY-spins defined by local dynamical phases. Numerical evidence is presented in
favor of the hypothesis for the shell model, in particular novel scaling laws and
derivative relations predicted by the existence of a thermodynamic limit. The
Gibbs measure appears to be in a high-temperature, unique-phase regime with
‘‘paramagnetic’’ spin order.
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1. INTRODUCTION

In a famous paper on the local structure of turbulence of incompressible
fluids, (1) A. N. Kolmogorov in 1962 considered inertial-range multipliers
defined by ratios of velocity increments wij(a, aŒ)=di, avj/di, aŒvj. Here
di, avj(x)=vj(x+aei) − vj(x) is the increment of the jth component of the
velocity vector v along the unit vector ei. Kolmogorov hypothesized that, at



very high Reynolds number, these multipliers should have distributions
which are universal functions only of the scale-ratio a/aŒ and not of the
absolute scale. He postulated further that multipliers corresponding to
widely separated scales should be statistically independent. See also ref. 2.
Benzi, et al. (3) have made a more precise and quite remarkable hypothesis
in the context of a ‘‘shell model’’ of turbulence. The latter are quadratically
nonlinear dynamical systems for variables in a finite number N of shells
with wavenumbers kn=lnk0, n=1,..., N with l > 1. For example, the
SABRA model (4) has one complex mode un per shell which obeys a
dynamical equation

dun

dt
=i(akn+1un+2ug

n+1+bknun+1ug
n − 1 − ckn − 1un − 1un − 2) − nk2

nun+fn. (1)

(Reference 3 considered a slightly different model.) Here * stands for
complex conjugation, fn is a forcing term which is restricted to the first
few shells and n is the ‘‘viscosity.’’ When a+b+c=0, Eq. (1) satisfies
conservation of ‘‘energy’’ E=1

2 ; n |un |2 and ‘‘helicity’’ H=; n (a/c)n |un |2

in the n Q 0 limit, analogous to the quadratic invariants of the inviscid
Euler equations. Then, for large N and high Reynolds number Re=
`O|u1 |2P/(nk0), the authors of ref. 3 hypothesized that the variables un,
n=1,..., N should have a steady-state statistical distribution given by a
Gibbs measure

P(u1,..., uN) 3 exp 5−C
n

Fn(un, un − 1, un+1,...)6 . (2)

Because turbulence is a dissipative state, far from thermodynamic equilib-
rium, the potentials Fn have nothing to do with the inviscid invariants,
even as n Q 0. For shellnumbers n in the long inertial range, 1 ° n ° N,
supposed that the potential Fn becomes a universal function F independent
of n. (3) They supposed further that the potential F is a sufficiently short-
range function of ‘‘the ratios between the u’s and their angles’’. (3) The
authors of ref. 3 used an ‘‘infinite-temperature’’ model with independent
multipliers to predict the scaling exponents. It is usually assumed that such
an approximation is qualitatively correct. However, we show that the mul-
tipliers cannot be strictly independent and that the correlations are essen-
tial. We also give evidence for the Gibbs hypothesis, based on theoretical
analysis and direct numerical simulation of the shell-model dynamics (1).

2. THEORETICAL CONSIDERATIONS

First, let us give a more precise form to the hypothesis. In the shell
model, we introduce an amplitude rn and a phase hn for each shellnumber n,
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via the polar decomposition un=k−1/3
n · rne ihn. Following ref. 3, we separate

out the Kolmogorov 1941 scaling factor k−1/3
n . If wn=rn/rn − 1 is the mul-

tiplier defined by ref. 3 and Dn=−hn+hn − 1+hn − 2 is the dynamical phase
factor, (3, 4) then we define

sn=ln(wn), Un=exp(iDn) (3)

where sn is a local ‘‘slope’’ and Un is an ‘‘XY-spin’’ or 2-dimensional
rotator spin. The definition of sn is motivated by the observation that
ln rn=;n

k=1 sk is then a ‘‘total spin.’’ Alternatively, hn=ln rn can be
viewed as a ‘‘height function,’’ as in equilibrium models of surface rough-
ness. Then, our hypothesis is that the distribution of these ‘‘spin variables’’
tn=(sn, Un) is a translation-invariant Gibbs measure with a short-range
potential F, ignoring finite-size effects from the forcing and dissipation
ranges of shellnumber n. The potential is expected to be, at least, absolutely
summable (ref. 5, Section 2.1), which guarantees its uniqueness up to phy-
sical equivalence. However, the numerical evidence presented below
suggests that the interactions are not merely summable, but indeed quite
rapidly decaying.

On the other hand, the potentials cannot have a strictly finite range R,
i.e., vanishing for any set of spin variables containing pairs tn, tnŒ with
|n − nŒ| > R. In particular, the assumption of zero-range interactions, R=0,
or independent spins which was made made by ref. 3 is ruled out. Using
exact constraints from the dynamics, we show in Appendix A.1 that the
assumption of independent spins leads to the deterministic K41 fixed-point
un ’ −i(e/kn)1/3 as the only statistically stable solution. In reality this
solution is dynamically unstable. (7) The false assumption of independence
stabilizes this solution and prevents intermittency corrections from
developing. This is plausible, since intermittency is known to arise in the
shell models from ‘‘burst’’ solutions which exhibit long-range coherence in
both sn and Un over many shells (e.g., see Fig. 4 in ref. 8). Furthermore, the
K41 fixed-point can be shown to be stabilized by assuming any finite-range
potential between spins, (6) so that the stationary measure cannot be Gibbs
with any potential of strictly finite-range.

Another argument against independence of spins is that this would
imply the quadratic equation

am2
3+bm3+c=0 (4)

for the multiplier moment mp=OwpP, p=3. Cf. ref. 3, Eq. (18). This is
analogous to the ‘‘4/5-law’’ of fluid turbulence . Note that, in the inde-
pendent spin approximation, the structure-function scaling exponents are
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given by zp=(p/3) − logl mp. There are two roots of the quadratic equa-
tion, m3=1 and m3=c/a. The first solution gives constant mean energy
flux but zero helicity flux, while the second gives the opposite. Thus, no
joint cascade of energy and helicity is possible in the independent spin
approximation, contrary to observations. (9) Furthermore, the second solu-
tion violates the realizability inequality m3 \ 0, when c/a < 0 and the
second invariant is truly ‘‘helicity-like.’’ These conclusions do not remain
true for a potential of finite but non-zero range. The quadratic equation
still holds for a nearest-neighbor potential or Markov chain approxima-
tion, where now m3 is the principal eigenvalue of a ‘‘transfer matrix.’’ (6) As
shown in Appendix A.2 of the present paper, joint cascades of energy and
helicity are permitted in a Markov chain model, if m3=1 and the sublead-
ing eigenvalue m −

3=c/a. Furthermore, a concrete Markov chain model is
constructed in the appendix to show that this situation may be realized.
While the Gibbs measure cannot be exactly nearest-neighbor, we believe
that this may be a good working approximation.

3. NUMERICAL RESULTS

We now present our simulation results for the SABRA model, with
standard choice of parameters l=2, k0=2−4, a=1, b=c=−1/2. We
performed two sets of simulations, one with N=22, n=10−7 and the
second with N=26, n=2 · 10−9. A force fn=Fn(1+i)/ug

n was used with Fn

real, nonzero only for n=2, 3, and chosen to give an input of energy but
not helicity. Except where stated, the results shown are for the N=26
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5 10 15 20 25
10-17
10-16
10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5

0.0001
0.001

0.01
0.1

1

n

E
ne

rg
y 

sp
ec

tr
um

 E
(n

)

5 10 15 20 25

0

0.0005

0.001

0.0015

n

 E
ne

rg
y 

flu
x 

<
Π

nE
>

Fig. 1. Energy spectrum shows k−5/3 power law from 5th shell to 23rd shell. In the inset we
show a constant mean energy flux in the inertial range.
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Fig. 2. Css(n; m), Re CUU(n; m) and Im CUU(n; m) for n=12.

simulation. Stationary time-averages were achieved by integrating over a
period of more than 2900 large-eddy turnover times. In Fig. 1 are shown
the energy spectrum and mean energy flux in the simulation.

We first present evidence for the good decay of correlations of
‘‘spins.’’ We define the spin-spin correlation functions CXY(n; m)=
OXg

n YmP−OXg
nPOYmP for X, Y=s, U. The results are shown in Figs. 2

and 3. It may be seen that the correlations decay quite rapidly in |m − n|,
exponentially or as a large inverse power (\ 7). This is an indication that
the Gibbs measure of the hypothesis does not correspond to a critical point
with a power-law scaling. For the ‘‘1-dimensional’’ spin chain of the
shell model a phase-transition would, in any case, require a long-range
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Fig. 3. Re CsU(n; m), and Im CsU(n; m) for n=12.
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potential F, e.g., a pair interaction decaying by a small inverse power [ 2
(e.g., see ref. 10). The hypothesis of a short-range potential therefore rules
out any such critical behavior.

Further evidence against any critical behavior comes from a consider-
ation of the thermodynamics. The Gibbs hypothesis implies that a ‘‘Gibbs
free-energy’’ g should exist for the spin models, defined by a suitable
‘‘thermodynamic limit.’’ Thus, we may introduce ‘‘magnetic fields’’ p cor-
responding to the s-spins and h=hx+ihy corresponding to the U-spins, so
that the concave free-energy is defined by

g(p, h)= lim
n Q .

−1
n

ln Zn(p, h) (5)

with the ‘‘partition function’’

Zn(p, h) :=7exp 5 C
n

k=1
(psk+Re(hgUk))68 . (6)

The absolute structure functions are proportional to the ‘‘partition func-
tions’’ at h=0: O|un |pP=k−p/3

n Zn(p, 0). Thus, the existence of a thermo-
dynamic limit, as implied by the Gibbs hypothesis, yields a power-law
scaling of the structure functions ’ k−zp

n with the anomalous exponent
dzp :=zp − p

3 related to the free-energy by g(p, 0)=dzp · ln l. However, the
Gibbs hypothesis implies also a power-law scaling for the ‘‘phase structure-
functions’’ Zn(0, h). Figure 4 shows clean power-law ranges for these
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Fig. 4. Phase structure functions: (a) Zn(0, 0, −0.75); (b) Zn(0, −0.5, 0).
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Fig. 5. Gibbs free energy: (a) g(0, hx, 0); (b) g(0, 0, hy).

quantities, solid evidence in favor of the Gibbs hypothesis (but not a proof,
since the thermodynamic limit could exist even for a non-Gibbsian
measure; e.g., see ref. 11). In Fig. 5 we plot cross-sections of the Gibbs free
energy, g(0, hx, 0) and g(0, 0, hy). These appear to be smooth functions of
their arguments. There is no evidence for any non-analyticity that would
signal appearance of a phase transition.

We now study the question of ‘‘translation-invariance’’ of the mea-
sures, by means of the single-site spin distributions. We plot in Figs. 6 and
7 the distributions P(sn) and P(Dn), for different values of n in the inertial
range. We see that these distributions collapse quite well, verifying the
‘‘translation-invariance’’ assumption. The first distribution is approxi-
mately exponential type P(s) % (a/2) exp(−a |s|) with a % 2.00 while the
second is fit well by P(D) % C exp(−b sin(D)) with C % 0.1, b % 1.2. The
‘‘infinite-temperature’’ model in ref. 3 does not predict well either P(s) or
P(D). That approximation assumed a distribution P(D) uniform on the
interval [−p, 0] and yielded a multiplier distribution P(w) also compactly
supported on a finite interval [w− , w+]. However, the result in Fig. 6 (see
inset) implies a distribution P(w) with two power-law regimes, ’ wa − 1 for
w ° 1 and ’ w−a − 1 for w ± 1. This is inconsistent not only with ref. 3
but with any independent spin model. Because of the power-law tail for
large w, the moments which would give the anomalous scaling exponents
for independent spins in fact diverge, OwpP=+. for p \ a.
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Fig. 6. Distributions of sn, for n=9–12. In the inset are the distributions of wn.

The distributions for the s-spins appear symmetric under spin-flip
s Q −s around the K41 value s=0. In fact, the exponential tails on the
right and the left arise symmetrically from the same events in SABRA,
which we call ‘‘defects.’’ These are events in which the amplitude in a single
shell, say, the nth, drops to a very low value, rn ° 1. Intermittent bursts in
the shell models are generally preceded by such events, (8, 12) but defects do
not need to appear in association with bursts. Since sn=ln(rn/rn − 1), the
negative tail where sn ° −1 comes from realizations with a ‘‘defect’’ in the
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Fig. 7. Distributions of Dn, for n=9–12.
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nth shell, while the positive tail where sn ± 1 comes from realizations with
‘‘defects’’ in the (n − 1)st shell. The statistical distribution of such ‘‘defects’’
in a given shell n can be inferred from the constancy of P(un) at un=0. By
a change to polar coordinates (rn, hn), one finds P(rn) % (const.) rn for
rn ° 1. For events in the negative tail, rn ° 1 while rn − 1 % 1. In that
case, sn % ln rn and rn % esn. Therefore, by change of variables,
P(sn)=| d(rn)

dsn
| · P(rn)|rn % esn % (const.) e2sn for sn ° − 1. An identical

argument for the positive tail using sn % − ln(rn − 1) and rn − 1 % e−sn gives
P(sn) % (const.) e−2sn for sn ± 1. This argument assumes only that the
amplitudes rn, rn − 1 in the ratio are not strongly correlated, which could
suppress the long tails. The distribution P(D) also exhibits a symmetry
D Q p − D around the K41 solution with D=−p/2. This symmetry can be
expressed as U Q −Ug and is seen as well in the vanishing of Im CUU and
Re CsU in Figs. 2 and 3 and in the near symmetry of g(0, hx, 0) in Fig. 5. In
fact, this is an exact symmetry of the dynamics, broken only by our
forcing. If un is a solution of SABRA with a force fn, then −ug

n is a solu-
tion with force −fg

n and under this transformation Un Q −Ug
n for all n.

This symmetry should be restored for large n, similar to restoration of iso-
tropy in 3D.

The distribution P(s) cannot be exactly symmetrical under the spin-
flip s Q −s. There must be a non-vanishing mean OsP or a ‘‘magnetiza-
tion,’’ due to the fact that Kolmogorov 1941 mean-field scaling of pth-
order structure functions is not exact at p=0. (13) Indeed, by the Gibbs
hypothesis, the magnetization can be obtained from the thermodynamic
formula OsP=−“g

“p |p, h=0. In Fig. 8 we plot OsnP vs. n for the two simula-
tions of SABRA with N=22 and N=26. We see that there is a slight

-∂g/∂p|p,h=0

N=22
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<
σ n>

Fig. 8. OsnP vs. n with − “g/“p|p, h=0.
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breaking of translation symmetry. This is likely due to finite-size effects
and becomes much smaller for the N=26 shell simulation than for N=22.
In the same figure is plotted a straight horizontal line for the prediction
OsP % −0.0757 obtained from the derivative of g. We see that the agree-
ment is quite satisfactory. It is also apparent from Fig. 7 that a non-zero
expectation OUP occurs, non-invariant under conjugation U Q Ug. In fact,
a negative value Osin(D)P < 0 is required in SABRA for a forward cascade
of energy. (3, 4) We plot in Fig. 9 the ‘‘magnetizations’’ OUnP vs. wavenum-
ber n. Again we see a finite-size breaking of translation-symmetry, which
lessens going from N=22 to N=26. The numerical values of these
‘‘magnetizations’’ are also predicted by derivatives of the Gibbs free
energy, giving a large expectation Osin DP % −0.489 but a small value
Ocos DP=0.00814, consistent with approximate symmetry U Q −Ug. These
results are plotted in Figs. 8 and 9 as horizontal lines and obviously give
satisfactory agreement with the direct measurements of magnetizations.
The results indicate that there is ‘‘spin-ordering’’ in the turbulent systems,
which breaks discrete spin-flip symmetries. Peierls-type arguments, (14)

including rigorous versions such as Pirogov–Sinai theory, (15) indicate that
discrete symmetries cannot be spontaneously broken in ‘‘1-dimensional
lattice’’ systems such as the shell model, if the interaction potential is short-
ranged. A 1-dimensional Gibbs distribution with non-zero magnetization
for a symmetric, short-ranged potential is unstable to formation of domain
walls. We expect the spin order here to be not ‘‘ferromagnetic’’ but
‘‘paramagnetic,’’ arising from explicit symmetry-breaking terms in the
potential F of the Gibbs measure.
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Fig. 9. ORe(Un)P vs. n with − “g/“hx |p, h=0 and of OIm(Un)P vs. n with − “g/“hy |p, h=0.
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4. DISCUSSION AND CONCLUSIONS

In this work, we have shown that Kolmogorov multipliers and
dynamical phases in the shell model must be correlated from shell-to-shell.
We have also presented evidence that these ‘‘spin’’ variables, while not
independent, are distributed according to a translation-invariant Gibbs
measure. Of course, this has certainly not been proved in this work. There
are non-Gibbsian measures on one-dimensional lattices, such as that of
Schonmann, (16) which have both exponential decay of correlations and a
thermodynamic limit of the Gibbs free energy (which, however, is there
non-analytic). On the other hand, that type of example has been shown to
be Gibbs also in a somewhat generalized sense. (17) The hypothesis that the
distribution of suitably defined ‘‘spins’’ in the shell model is Gibbsian with
a summable potential has testable consequences, some of which we have
verified in this work.

If the hypothesis is true, then it is possible to recover the potentials from
the finite-shell marginal distributions. Indeed, if Pn,..., n+N − 1(tn,..., tn+N − 1)
is the probability density of the ‘‘spins’’ at shells n,..., n+N − 1 in the iner-
tial range, then

ln Pn,..., n+N − 1(tn,..., tn+N − 1)=− C
N − 1

k=0
Fn+k(t)+o(N), (7)

whenever the potential is absolutely summable. See Proposition 2.46 in
ref. 18. More directly, the potentials may be derived from conditional
probabilities of the spins via the Möbius inversion formula. (19) For
example, if the ‘‘spins’’ are distributed by a Markov chain or nearest-
neighbor Gibbs measure, then, up to constants, the 1-body interaction is

F (1)
n (tn)=−ln Tn | n − 1(tn | tg) − ln Tn+1 | n(tg | tn) (8)

and the 2-body interaction is

F (2)
n, n − 1(tn, tn − 1)= − ln Tn | n − 1(tn | tn − 1)

+ln Tn | n − 1(tn | tg)+ln Tn | n − 1(tg | tn − 1). (9)

Here Tn | n − 1(tn | tn − 1) is the transition probability of the Markov chain and
tg is a constant reference value of the spin. As this example makes
clear, the potentials of the Gibbs measure can be recovered, in principle,
from conditional probabilities obtained in numerical simulations of the
dynamics.
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If true, it is intellectually interesting that probability measures arising
from turbulent dynamics may be Gibbsian, in a suitable spin representa-
tion. However, more importantly, it gives one some new tools that one may
apply to the turbulence problem. For example, it offers a new route to cal-
culate the scaling exponents as a ‘‘free energy’’ g(p, h) of a one-dimen-
sional spin system. Furthermore, formulas for the conditional probabilities
of small-scale modes given the large-scale ones provided by the Gibbs
hypothesis may be very useful in carrying out large-eddy simulations of
turbulence. (20) Some preliminary tests of these ideas have already been
carried out for the shell models and will be reported elsewhere. (6)

Similar results as discussed here hold for Navier–Stokes dynamics, (21)

using the velocity increments advocated by Kolmogorov. (1) Multipliers and
spins may also be defined by a representation of the Navier–Stokes equa-
tions in terms of orthogonal wavelet bases. (22) In that formulation, the
dynamics resembles the shell model on the dyadic Cayley tree. (23)

Generalizing ref. 3, the invariant measure of the latter should be a Gibbs
measure on a Bethe lattice (see ref. 24, Chapter 4). Whereas standard shell
models corespond to ‘‘1-dimensional’’ spin systems, the spin systems on the
Bethe lattice are effectively ‘‘infinite-dimensional.’’ Nevertheless, the statis-
tics in the shell model and in Navier–Stokes should be qualitatively similar,
as present evidence suggests that the Gibbs distributions for both are in the
high-temperature, unique-phase regime.

A. APPENDICES

A.1. Stabilization of the K41 Solution

We show in this first appendix that the K41 solution would be stable if
multipliers were independent for distinct shells (or, in fact, even if they
were independent for shells a finite distance apart). We show that this
follows from a set of exact dynamical constraints on the multiplier
variables tn=(wn, Dn).

For this purpose, we must transform the equations of motion into
those variables. In terms of rn, hn, the SABRA dynamics becomes

ṙn

rn
=

k2/3
n

l
5a

rn+2rn+1

rn
sin Dn+2+b

rn+1rn − 1

rn
sin Dn+1+c

rn − 1rn − 2

rn
sin Dn

6

+
k1/3

n Re(fne−ihn)
rn

− nk2
n (10)
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and

ḣn=
k2/3

n

l
5a

rn+2rn+1

rn
cos Dn+2+b

rn+1rn − 1

rn
cos Dn+1 − c

rn − 1rn − 2

rn
cos Dn

6

+
k1/3

n Im(fne−ihn)
rn

. (11)

Going over to the scale-local variables wn, Dn, this becomes

ẇn=wn[Un(w, D) − Un − 1(w, D)] :=Wn(w, D)

and

Ḋn=−Vn(w, D)+Vn − 1(w, D)+Vn − 2(w, D) :=Zn(w, D)

where Un, Vn are the righthand sides of (10) and (11), respectively, expressed
in terms of wn, Dn. Thus, considering just the inertial-range part of the
dynamics,

Un(w, D)=
k2/3

n

l
· [a · wn+2 sin Dn+2 · w2

n+1wnwn − 1

+b · wn+1 sin Dn+1 · wn − 1+cw−1
n sin Dn] D

n − 2

k=1
wk (12)

and

Vn(w, D)=
k2/3

n

l
· [a · wn+2 cos Dn+2 · w2

n+1wnwn − 1

+b · wn+1 cos Dn+1 · wn − 1 − cw−1
n cos Dn] D

n − 2

k=1
wk . (13)

In terms of these variables, the dynamics appears highly nonlocal in scale,
because of the product <n − 2

k=1 wk.
If Pn(tn) is the distribution of tn=(wn, Dn), then it is straightforward

to show that

“tPn(tn)=−
“

“wn
[OWn | tnP Pn(tn)] −

“

“Dn
[OZn | tnP Pn(tn)], (14)

where OWn | tnP, OZn | tnP are conditional averages for fixed tn. These
equations are exact, but not closed in terms of Pn. However, if we assume that
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the statistics of the model are given by a product measure < n Pn(tn)—and
with only that assumption—then we obtain closed equations for the Pn’s. In
the inertial range, these equations are of the form (14) with

OWn | tnP=
k2/3

n

l
D
n − 4

k=1
OwkP[(Anw3

n − Bnw2
n+Cnwn)+(Dnw2

n − En) sin Dn]

OZn | tnP=
k2/3

n

l
D
n − 4

k=1
OwkP[(Fnw2

n+Gnwn+Hn) − (Knw−1
n +Lnwn) cos Dn]

where

An=−
a

l2/3 Own+1Sn+1POwn − 1POwn − 2POwn − 3P

Bn=−aOwn+2Sn+2POw2
n+1POwn − 1POwn − 2POwn − 3P

Cn=bOwn+1Sn+1POwn − 1POwn − 2POwn − 3P−
c

l2/3
7Sn − 1

wn − 1

8 Own − 3P

Dn=−
b

l2/3 Own − 2POwn − 3P

En=−cOwn − 2POwn − 3P

Fn=
a

l2/3 Own+1Cn+1POwn − 1POwn − 2POwn − 3P

Gn=−aOwn+2Cn+2POw2
n+1POwn − 1POwn − 2POwn − 3P

Hn=−bOwn+1Cn+1POwn − 1POwn − 2POwn − 3P−
c

l2/3
7Cn − 1

wn − 1

8 Own − 3P

+
b

l4/3 Own − 1Cn − 1POwn − 3P−
c

l4/3
7Cn − 2

wn − 2

8

Kn=−cOwn − 2POwn − 3P

Ln=−
b

l2/3 Own − 2POwn − 3P−
a

l4/3 Ow2
n − 1POwn − 2POwn − 3P.

In these expressions Sn=sin Dn, Cn=cos Dn for all n. Note that the result-
ing closed equations for the Pn’s are nonlinear integro-partial differential
equations, since the averages in the above expressions are over the Pn’s
themselves.
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If we assume further that all the ‘‘spins’’ tn are identically distributed,
i.e., Pn=P for all n, then the above equations for Pn for each n reduce to
the same equation for P, after a change in the time-scale by a factor
k2/3

n
l OwPn − 4 :

“tP(t)=−
“

“w
[W̄(t) P(t)] −

“

“D
[Z̄(t) P(t)], (15)

with now

W̄(t)=(Aw3 − Bw2+Cw)+(Dw2 − E) sin D

Z̄(t)=(Fw2+Gw+H) − (Kw−1+Lw) cos D

where

A=−
a

l2/3 OwSPOwP3

B=−aOwSPOw2POwP3

C=bOwSPOwP3 −
c

l2/3
7S

w
8 OwP

D=−
b

l2/3 OwP2

E=−cOwP2

F=
a

l2/3 OwCPOwP3

G=−aOwCPOw2POwP3

H=−bOwCPOwP3 −
c

l2/3
7C

w
8 OwP+

b
l4/3 OwCPOwP−

c
l4/3

7C
w
8

K=−cOwP2

L=−
b

l2/3 OwP2 −
a

l4/3 Ow2POwP2.

Using a+b+c=0, it is easy to verify that P± (t)=d(w − 1) d(D +
p
2) are

exact time-independent solutions of (15). The presence of these solutions is
due to the well-known existence of exact, steady-state ‘‘K41’’ solutions of
the SABRA model, of the form u ±

n = ± iAk−1/3
n for any choice of the real
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constant A > 0. The solution u+
n has a backward energy transfer to low

wavenumbers, while u−
n has forward transfer to high wavenumbers.

It is interesting that P− (t) is linearly stable under the dynamics (15),
while P+(t) is unstable. In fact, the linearization of (15) is

“tdP(t)= −
“

“w
[W̄± (t) dP(t)] −

“

“D
[Z̄± (t) dP(t)]

−
“

“w
[dW̄(t) P± (t)] −

“

“D
[dZ̄± (t) P± (t)] (16)

with

W̄± (t)=(A± w3 − B± w2+C± w)+(D± w2 − E± ) sin D (17)

Z̄± (t)=−(K± w−1+L± w) cos D (18)

where

A± = +
a

l2/3 , B± = + a, C± = ±1b −
c

l2/3
2 , D± =−

b
l2/3 , E± =−c,

F± =G± =H± =0, K± =−c, L± =−1 b
l2/3+

a
l4/3

2 .

and dW̄(t), dZ̄(t) have the same form as W̄(t), Z̄(t) but with coefficients
dA, dB,..., etc. that can be obtained by linearizing the corresponding coef-
ficients A, B,..., etc. Now the essential fact is that t± =(1, ± p

2) is an
unstable/stable fixed point of the dynamical system (ẇ, Ḋ)=
(W̄± (t), Z̄± (t)), for ± respectively. This is easily verified directly from
Eqs. (17) and (18). For example, the linearization about those fixed points
is

R “Z−

“w
“Z−

“D

“W−

“w
“W−

“D

S :
t=t+

=R11 −
1

l2/3
2 (a − c) 0

0 11 −
1

l4/3
2 a+11 −

1
l2/3

2 b

S ,

R “Z+

“w
“Z+

“D

“W+

“w
“W+

“D

S :
t=t−

=−R (2a+b)+
2a+5b

l2/3 0

0 11 −
1

l4/3
2 a+11 −

1
l2/3

2 b

S .
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When a > 0 and b, c < 0, then we see that both eigenvalues are positive for
the + fixed point, and the second eigenvalue is negative for the − fixed
point. The first eigenvalue of the − fixed point is also negative when

2a+5b > −(2a+b) l2/3,

which imposes a condition on the coefficients. For example, with the
common parameterization a=1, b=−E, c=E − 1, a region in the
(E, l)-plane is selected specified by 2 − 5E > (E − 2) l2/3. Along the curve
l=1/(1 − E) for which the second invariant is helicity-like, the condition is
that l should lie in an interval (1, lg) with lg % 2.467. In particular, the
standard case l=2, a=1, b=c=−1/2 which we simulated in this paper
lies in this region. For all parameter values satisfying the above condition
t+ is linearly unstable, and t− linearly unstable.

Let then Bd(t± ) be a disk of radius d centered at t± in the strip
(0, .) × [ − p, p] of the (w, D)-plane, and let Bc

d(t± ) be its complement.
Since the integral over Bc

d(t± ) of the second set of terms in (16) vanishes
identically, it follows that the perturbation term >Bc

d(t± ) dt dP(t) satisfies
the same equation as it would under the flow of the vector field in (17) and
(18). In that case, for the + sign, >Bc

d(t+) dt dP(t) increases in time, whereas
for the − sign >Bc

d(t− ) dt dP(t) decreases in time, for any d > 0. We there-
fore see that solution P+(t) is linearly unstable, whereas the solution P− (t)
is linearly stable. In fact, a direct integration of the full nonlinear equation
(15) shows that P− (t) is the global attractor for all initial probability
density functions P(t). See ref. 6.

This argument, given here assuming perfect independence of ‘‘spins’’
at different shellnumbers, can be generalized assuming a correlation of
finite range r. In that case, one can develop a similar equation for the
r-spin distribution Pr(tn, tn+1,..., tn+r). It is found in the same manner that
a delta-function at the K41 fixed point value t− in all shells is the unique,
global attracting solution. For details, see ref. 6.

A.2. Markov Chain Models of Multipliers

In this second appendix we briefly discuss Markov chain models for
the multipliers. We shall assume that tn=(wn, Dn) has statistics derived
from a stationary Markov chain with single-shell distribution P(tn) and
forward transition probability T(tn+1 | tn), n=1, 2, 3,... . Because of the sta-
tionarity assumption, these functions do not depend upon shellnumber n.
We first discuss the relation between the structure-function scaling expo-
nents and the eigenvalues of certain ‘‘transfer matrices.’’ This is a particular
example of the connection discussed in the text between scaling exponents
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and free energy functions. We next discuss the scaling properties of the
mean fluxes of conserved quantities. In particular, we show how Markov
chain models can yield a joint cascade of both energy and helicity.

To calculate the absolute structure functions, it is easiest to consider
the time-reversed Markov chain, with backward transition probability

T2(tn | tn+1)=
T(tn+1 | tn) P(tn)

P(tn+1)
.

Then, using rp
n =<n

k=1 wp
k=<n

k=1 epsk,

Orp
nP=F dtn+1 P(tn+1) F dtn epsnT2(tn | tn+1) · · · F dt1 eps1T2(t1 | t2)

=F dtn+1 P(tn+1) F dt1 Tn
(p)(t1 | tn+1) (19)

where the ‘‘transfer matrix’’ T(p) is defined by

T(p)(tn | tn+1) :=epsnT2(tn | tn+1)

and Tn
(p) is its n-fold convolution or matrix product. For large n, we have

asymptotically that

Tn
(p)(t1 | tn+1) ’ mn

(p)R(p)(t1) L(p)(tn+1) (20)

where m(p) is the principal eigenvalue of T(p) and R(p), L(p) are correspond-
ing right and left eigenfunctions. By the Perron–Frobenius theorem, these
eigenvalues are real and non-negative, and the left and right eigenfunctions
may also be chosen to be non-negative. Thus, we find that

Orp
nP ’ mn

(p)OL(p)PR̄(p)

for n Q ., where OL(p)P=> dt P(t) L(p)(t) and R̄(p)=> dt R(p)(t). In this
way, we obtain the relationship between the scaling exponents of structure
functions and eigenvalues of the transfer matrices as

zp=
p
3

− logl (m(p)).

Exact moment constraints require that m(3)=1, so that z3=1 within a
Markov chain model. For details, see ref. 6.

We now consider the asymptotics of mean fluxes of the inviscid
invariants. In the SABRA model, the energy flux is given by
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PE
n =−aknTn+1+ckn − 1Tn

and the helicity flux by

PH
n =−2a(knTn+1 − kn − 1Tn).

Here Tn is a triple velocity product

Tn=Im(ug
n+1unun − 1)=

1
kn

rn+1rnrn − 1 sin Dn+1

In terms of the scale-local variables wn, Dn, n=1, 2, 3,...

PE
n =

1
l

[−a · wn+2 sin Dn+2 · w2
n+1 · w3

n+c · wn+1 sin Dn+1 · w2
n] D

n − 1

k=1
w3

k

and

PH
n =

− 2a
l

1a
c
2n

[wn+2 sin Dn+2 · w2
n+1 · w3

n − wn+1 sin Dn+1 · w2
n] D

n − 1

k=1
w3

k.

We now evaluate the mean values of these flux variables. If
P2(tn+2, tn+1)=T2(tn+1 | tn+2) P(tn+2) is the joint distribution of ‘‘spins’’
tn+2, tn+1 at two successive shells, then

OPE
n P=

1
l

5−a F dtn+2 F dtn+1 P2(tn+2, tn+1) ·wn+2 sin Dn+2 ·w2
n+1 ·F dt1 Tn

(3)(t1 | tn+1)

+c F dtn+1 F dtn P2(tn+1, tn) ·wn+1 sin Dn+1 ·w2
n F dt1 Tn−1

(3) (t1 | tn)6 (21)

and

OPH
n P=−

2a
l
1a

c
2n

5 F dtn+2 F dtn+1 P2(tn+2, tn+1) · wn+2 sin Dn+2 · w2
n+1 · F dt1 Tn

(3)(t1 | tn+1)

− F dtn+1 F dtn P2(tn+1, tn) · wn+1 sin Dn+1 · w2
n F dt1 Tn − 1

(3) (t1 | tn)6 . (22)
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To calculate the mean energy flux asymptotically for large n, it suffices
to use the previous asymptotic expansion (20) for p=3. This gives

OPE
n P ’ −

1
l

(am(3) − c) mn − 1
(3) Ow2 sin D2 · w2

1L(3)(w1, D1)P R̄(3)

as n Q .. The only way that the energy flux can be asymptotically con-
stant, i.e., independent of shellnumber n, is if m(3)=1. This is another
argument for that constraint, independent of that given in ref. 6. In that
case, we obtain finally that

OPE
n P ’ −

1
l

(a − c)Ow2 sin D2 · w2
1L(3)(w1, D1)P R̄(3)

asymptotically for n Q ..
However, for helicity flux, the contribution from the leading-order

term in the asymptotic expansion (20) gives zero identically, because

Own+2 sin Dn+2 · w2
n+1L(3)(wn+1, Dn+1)P=Own+1 sin Dn+1 · w2

nL(3)(wn, Dn)P,

by stationarity of the Markov chain. Thus, a non-vanishing contribution is
obtained only from the next order in the asymptotic expansion for large n,

Tn
(3)(tn | tn+1) ’ mn

(3)R(3)(t1) L(3)(tn+1)+m −n
(3)R

−

(3)(t1) L −

(3)(tn+1)

where m −

(3) is the subleading eigenvalue of T(3) (i.e., the complex eigenvalue
with next largest magnitude |m −

(3) | after |m(3) |), and R −

(3), L −

(3) the corre-
sponding right and left eigenfunctions. In that case,

OPH
n P ’ −

2a
l
1a

c
m −

(3)
2n 11 −

1
m −

(3)

2 Ow2 sin D2 · w2
1L −

(3)(w1, D1)P R̄ −

(3)

This flux is constant precisely when m −

(3)=c/a. In that case,

OPH
n P ’

2a
lc

(a − c)Ow2 sin D2 · w2
1L −

(3)(w1, D1)P R̄ −

(3)

asymptotically for n Q ..
When c/a < 0, a non-zero helicity flux is ruled out in an independent

multiplier model by the realizability inequality Ow3P > 0. However, in a
Markov chain model, there is no such constraint, because the subleading
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eigenvalue m −

(3) may easily be negative. As a concrete example, consider the
Markov chain with single-shell distribution

P(tn)=Ce−b · sin DnPW(wn),

where PW(wn) is any density on the interval (0, .), and with transition
probability density

T2(tn | tn+1)=P(tn) ·51+1 c
a
2 sgn(cos Dn) sgn(cos Dn+1)6 .

The latter kernel is non-negative when |c/a| < 1. In fact, it is a rank 2
operator and can be written as

T2(tn | tn+1)=R(tn) L(tn+1)+1 c
a
2 R −(tn) L −(tn+1)

where

R(tn)=P(tn), L(tn)=1, R −(tn)=P(tn) sgn(cos Dn), L −(tn)=sgn(cos Dn).

It is easily checked that these four vectors are a bi-orthonormal set, and
can be completed to a bi-orthonormal basis. It follows directly that

F dtn T2(tn | tn+1)=1,

so that T2 is a transition probability density, as claimed. Also P is its
invariant distribution, because

F dtn+1 T2(tn | tn+1) P(tn+1)=P(tn).

Furthermore, if > dw w3PW(w)=1, then by construction the only two
non-vanishing eigenvalues of T(3)(tn | tn+1)=w3

nT2(tn | tn+1) are m(3)=1 and
m −

(3)=c/a, with

R(3)(tn)=w3
nP(tn), L(3)(tn)=1

R −

(3)(tn)=w3
nP(tn) sgn(cos Dn), L −

(3)(tn)=sgn(cos Dn).

This example is not completely realistic as a statistical model for the shell
dynamics, because the amplitude multipliers wn, n=1, 2, 3,... form an i.i.d.
sequence. Hence, it is not consistent with the long power-law tail ’ w−3
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which we have observed in the numerical simulation. It is also does not
have a non-vanishing flux of helicity because, unfortunately, the expecta-
tions Ow2 sin D2 · w2

1L −

(3)(w1, D1)P=R̄ −

(3)=0 in this model. However, it
illustrates how it is possible to get the subleading eigenvalue c/a < 0 within
a realizable Markov chain model.
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